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Abstract

The turbulent di�usion boundary layer in a binary electrolyte was considered at Schmidt numbers of 1, 10 and 100
and exchange current densities between 10ÿ4 A mÿ2 and 10ÿ2 A mÿ2. A numerical scheme was developed for
e�cient investigation of the dynamics by means of large eddy simulations. The methodology was examined by
detailed comparisons with documented data from earlier large eddy and direct numerical simulations and good
agreement was found. Application of the methodology to electrochemical mass transfer indicated that the exchange
current density seems to have negligible e�ect on the mean concentration pro®le but it in¯uences the structure of the
¯uctuating ®eld in a visible manner.

List of symbols

c concentration of a species
c1 concentration of the metal ion
c2 concentration of the anion
C� characteristic concentration, ÿ D

us

@�c
@y

� �
wall

C subgrid-scale constant
Co reference value for concentration

at equilibrium
D passive scalar molecular di�usivity (m2 sÿ1).

For reduced concentration, D is a function
of the molecular di�usivities for cation
and anion species

Ec eddy di�usivity, ±vc d�c
dy

� �ÿ1
(m2 sÿ1)

F faradaic constant (96 485 C molÿ1)
io exchange current density due to mass

transport (A mÿ2)
Jwall constant mass ¯ux at the wall
Jo constant in the Butler±Volmer-like

boundary condition io=2F D1Res

Ko constant in the Butler±Volmer-like
boundary condition io=2F D1CoRes

l� viscous length scale m=us (m)
Lj e�ective mixing length for subgrid

eddy transport in direction jÿ�DxM
1 DxM

2 DxM
3 �1=9 �DxM

j �2=3
�

Ni number of nodes of the mesh in the i-direction
p pressure (N mÿ2)
Pr Prandtl number m=a

Prt turbulent Prandtl number mt=at
rz streak half-spacing in the spanwise

direction (m)
Res turbulent Reynolds number usd=m
sij rate of strain @ui

@xj
� @uj

@xi

� �
�sÿ1�

Sc Schmidt number m=D
Sct turbulent Schmidt number mt=Dt

DsM
i area of surface normal to i-direction

of the cell centered in xM DxM
j DxM

k

� �
t time (s)
us friction velocity,

����
sw
q

q
(m sÿ1�

u x-component of the velocity vector (m sÿ1�
DvM volume of the cell centred in xM DxM

1 DxM
2 DxM

3

ÿ �
v y-component of the velocity vector (m sÿ1�
w z-component of the velocity vector (m sÿ1�
DxM

i side length in the i-direction of the cell
centred in xM (m)

Dx distance between two nodes of the grid
in the x-direction (m)

Dy distance between two nodes of the grid
in the y-direction (m)

Dz distance between two nodes of the grid
in the z-direction (m)

z1 charge number of the metal ion
z2 charge number of the anion

Greek symbols
a heat molecular di�usivity (m2 sÿ1�
d half-width of the channel in the y-direction (m)
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1. Introduction

Numerical simulations of turbulent ¯ows for industrial
use are usually made by considering average ®elds. In
such simulations, in¯uence of turbulent ¯uctuations on
the transport of di�erent quantities must be modelled.
Models are usually constructed based on information on
the statistical structure of the ¯ow. Making use of
experimental data is a usual approach for development
and veri®cation of models.
Levich [1], based on the analogy with laminar

boundary layer, proposed that in a turbulent boundary
layer the thickness of the di�usion layer, dc, would be of
the order of magnitude of dh � Scÿ1=3. It has been
veri®ed experimentally in di�erent studies, for example
by Lin et al. [2]. The high value of Schmidt number
appearing in most of the practical applications is one
of the important factors resulting in thin di�usion
boundary layer, and making experimental investigation
of ¯ows with mass transfer problematic.
Unfortunately, although electrochemical systems

seem to be suitable for experimental investigations, see
e.g. [3], the measured data are usually in the form of
integrated quantities rather than detailed information
on the structure of the ¯ow. As examples, Fouad et al.
[4] and Newman [5] studied mass transfer in electro-
chemical systems and reported global information on
the process such as the total cell potential drop,
electrical current and global density variation of ionic
species. As a result, other tools must be used to provide
detailed data on the structure of the ¯ow.
With increasing improvement in digital computers

and computational methods, simulation can be used as
an alternative to physical experiments. Study of turbu-
lent channel ¯ow, for example, has played an important
role in modelling turbulence, in particular in the vicinity

of a rigid wall. A pure numerical solution of the
mathematical equations without a model is usually
refered to as direct numerical simulation. Clearly, the
advantage is that no models are involved at the cost of
being limited to low Reynolds numbers. An alternative
route is to use large eddy simulations, where only small
eddies which have a more universal behaviour are
modelled. Using large eddy simulations, higher
Reynolds number can be studied.
In earlier studies, boundary conditions for the passive

scalar were such that direct use of presented data for
modelling of mass transfer at the electrode in an
electrochemical system were not possible. The goal of
the present study is to provide detailed information
about the statistical structure of a turbulent boundary
layer with mass transfer using boundary conditions of
interest for electrochemical systems. Statistical data
presenting the structure of the boundary layer are to
be obtained by performing large eddy simulations. The
hydrodynamic part of the computation performed by
Zahrai et al. [6] is completed in the present study to treat
the mass conservation equation.

2. Formulation of the problem

In this study turbulent ¯ow of a binary electrolyte
outside the double layers in an in®nitely large cell is
considered. The electrodes are assumed to be at a
distance of 2d and the ¯ow is driven by a constant
pressure gradient, strong enough to make gravitational
e�ects negligible. The coordinate system is chosen so
that the electrodes are located at y � �d. The electrical
neutrality of the electrolyte can be expressed as
z1c1 � z2c2 � 0, where ci and zi denote the concentration
and the charge number of species i, respectively. The

dh hydrodynamic boundary layer (m)
dc di�usive boundary layer (m)
ki periodicity length in the i-direction (m)
l dynamic viscosity of solution (kg mÿ1 sÿ1)
m kinematic viscosity, l=q (m2 sÿ1)
q ¯uid density (kg mÿ3)
sw shear stress at the wallÿ

l @u
@y

�
wall

(kg m sÿ2)
sij stress tensor lsij (kg m sÿ2)

Subscripts
g A vector
�� � ��M value (� � �) at the centre

of the numerical cell xM

�� � ����j�M considered ®ltered quantity
evaluated on cell surface whose
normal direction is j

�� � ��max maximum of the considered
quantity

�� � ��min minimum of the considered
quantity

�� � ��rms RMS intensity of the considered
quantity

�� � ��t contribution from turbulence
�� � ��wall value at the wall
�� � ��x x-direction
�� � ��y y-direction
�� � ��z z-direction
�� � ��1 a value referred to the metallic

ionic species, except when
speci®ed di�erently in the text

�� � ��2 a value referred to the
nonmetallic ionic species,
except when speci®ed di�erently
in the text

�� � �� instantaneous value of �� � ��
�� � �� average value of �� � �� on time,

except when speci®ed di�erently
in the text

�� � ��0 � �� � �� ÿ �� � �� ¯uctuation with time of �� � ��
�� � ��� value made dimensionless with

the wall parameters
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transport equations for the mass in a binary electrolyte
can be reduced to one single di�usion-convection
equation for a concentration ®eld de®ned by
c � z1c1 � ÿz2c2. It can easily be shown that the charge
neutrality will then be identically satis®ed.
Under the above conditions, the ¯ow can be described

by the Navier±Stokes equations for an incompressible
¯uid, the law of conservation of mass for a ¯uid at
constant density and a transport equation for the
reduced concentration ®eld. Using us, the friction
velocity, as the characteristic velocity scale, l� � m=us,
the typical length scale in wall units, the continuity and
Navier±Stokes equations can be written for the instan-
taneous velocity vector as

r� � u� � 0 �1�

and

@u�

@t�
� u� � r�� �u� � ÿr�p� � D�u� �2�

where u denotes the instantaneous velocity ®eld and p is
the instantaneous pressure ®eld and is nondimensional-
ized by qu2

s . The transport equation for the reduced
instantaneous concentration ®eld, using the above
scales, can be written as

@c�

@t�
� u� � r�� �c� � 1

Sc
D�c� �3�

where Sc is the Schmidt number. The concentration ®eld
can be made dimensionless by using the mass ¯ux at the

wall, i.e. C� � ÿ D
us

@�c
@y

� �
wall

, where �c corresponds to the

averaged value of the instantaneous concentration. All
quantities are thus scaled in wall units; therefore the
superscript `+' will be dropped throughout the remain-
der of this paper. Nevertheless, for more clarity, the
superscript can be maintained in the captions of the
Figures. For the hydrodynamic equations, the no-slip
condition is used at the electrodes. Note that the
nondimensional half-channel width will be equal to
Res in the wall units. For the concentration ®eld
di�erent boundary conditions are considered. As a ®rst
step, in order to make comparisons with earlier numer-
ical and experimental investigations, the case of mass
transfer when the concentration is set to a given value at
the wall is considered, that is,

c�x;�Res; z; t� � �cwall �4�

For electrochemical systems, other boundary conditions
are also of interest. Here, two simpli®ed conditions are
used for modelling the mass ¯ux from the electrodes:

@c
@y
�x;�Res; z; t� � �Jwall �5�

that is, the ¯ux is given at the electrodes, and ®nally a
boundary condition which allows ¯uctuations of the ¯ux
with the value of the concentration at the electrodes,

@c
@y
�x;�Res; z; t� � �Ko c�x;�Res; z; t� ÿ Co� � �6�

In the above relations, Co, Ko and Jwall are given
constants. The form of the boundary condition in
Equation 6 comes directly from the ®rst term in a
Taylor expansion of the Butler±Volmer mass transfer
law (e.g., see [7]). Ko is proportional to the exchange
current density of the chemical reaction at the wall and
is equal to

Ko � io
2FD1CoRes

�7�

where io is the exchange current density, F is the
faradaic constant, D1 is the salt di�usivity constant for
the metallic ionic species of the binary electrolyte, and
Co a reference value for the reduced concentration at
equilibrium, which is the same as in the core of the
channel. If an electrolyte with low electrical potential
gradients is considered, the boundary condition (6) is a
good approximation of the electrochemical mass trans-
fer law at the electrodes. Experimentally, such a
con®guration can be obtained with an additional ion
that does not take part of the chemical reactions and
reduces the electrical resistance of the electrolyte
considerably [5]. Equation 6 can also be written as

@c
@y
�x;�Res; z; t� � �Ko � c�x;�Res; z; t� ÿJo� � �8�

where Jo � io=2FD1Res. In this form, it is clear that for
low values of Ko, this boundary condition approaches
Equation 5. It is worth noting that the exposed bound-
ary conditions above are linear and remain the same
when considering the time-averaged values.

3. Numerical procedure

The methodology used for the ¯uid velocity ®eld is
taken from the earlier work on the simulation of
turbulent channel ¯ows by Zahrai et al. [6]. In this large
eddy simulation, averaging over the volume of the
computational cells is used as the ®ltering function. The
subgrid model is an anisotropic version of the Smago-
rinsky eddy viscosity model. A rectangular computa-
tional cell, numbered M , has the width in the i-direction,
DxM

i , the area of surface normal to i-direction, DsM
i �

DxM
j DxM

k , and a volume size, DvM � DxM
1 DxM

2 DxM
3 . The

modelled Navier±Stokes equation (2) averaged over the
volume using the cell M , which gives the dynamics of
large eddies resolved on the given mesh, can be
expressed as
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DvM @�uM
i

@t

�
X3
j�1

DsM
j ÿ u��j�M

i u��j�M
j ÿ u�ÿj�M

i u�ÿj�M
j

� �h
ÿ p��j�M ÿ p�ÿj�M

�
dij

� i
�
X3
j�1

DsM
j � s��j�M

ij ÿ s�ÿj�M
ij

� �
� 1���

2
p C2L2

j

�
� �sM

ij

��� �����j�M
� s��j�M

ij ÿ �sM
ij

��� ����ÿj�M
� s�ÿj�M

ij

� ��
�9�

where sij is the resolved stress tensor, and sij the

deformation tensor, �sM
ij

��� ��� � ������������������������������P3
i�1
P3

j�1 �sM2

ij

q� �
, and

L2
j � �DxM

1 DxM
2 DxM

3 �2=9�DxM
j �4=3. Considering an instan-

taneous function f �x�, �f M stands for the ®ltered version
of f at the centre of cell M , whose volume is DvM . The
superscript ��j�M denotes that the considered ®ltered
quantity is evaluated on the cell surface whose centre
is the vector xM � 1

2DxM
j ej and whose normal direction

is ej.
The above equation is not di�erenced but only ®ltered

by integrating the Navier±Stokes equations on a cell
volume. The transport through the cell surfaces due to
¯uctuations of smaller sizes than the size of the cell are
modelled by a Smagorinsky-like subgrid viscosity. The
modi®ed Smagorinsky model has the property of
vanishing in the regions where the resolution is good
enough in an anisotropic manner. As a result, in the
wall-region where the mesh size is chosen so that
the details of the ¯ow can be studied, the in¯uence of
the model becomes weak without explicit damping. The
®ne resolution of the ¯ow near the wall eliminates the
need of wall functions. The model constant C was set to
0.08, as suggested in [6]. The ¯ow is driven by a body
force, or by a pressure gradient constant in space and
time. In other words, the pressure term is decomposed
into a mean pressure gradient: that is, a given constant
equal to 1 in wall units, and a ¯uctuating part which is
to be solved together with the velocity ®eld.
Similarly, the mass transport equation can be ®ltered

at each cell M , which can di�er from ones used for the
velocity ®eld. The turbulent Schmidt number, Sct, was
set to 0:25, which may be a reasonable value, since the

turbulent Prandtl number Prt, in the cases of large eddy
simulation with heat transfer, is usually proposed to be
between 1=2 and 1=3 (e.g., see [8]).
The computational domain is periodic in the stream-

wise and the spanwise directions with corresponding
periodicity lengths, kx and kz. The distance between the
channel walls is 2Res. kx and kz are, respectively, 4 �
p� Res and 2� p� Res, see Figure 1. Periodic bound-
ary conditions are applied for the pressure ¯uctuations,
the instantaneous velocity, and concentration in the
streamwise and spanwise direction.
As a unique feature of this study, the use of di�erent

mesh systems for the ¯uid velocity ®eld and the
concentration ®eld should be pointed out. Table 1
shows the characteristics of three meshes. The one
denoted as mesh 1� 1� 1 is used for the ¯uid velocity
®eld. The meshes used for the concentration ®eld are
mesh 1� 2� 1, and mesh 1� 6� 1. The ®nest mesh,
mesh 1� 6� 1, was used for the the calculations
performed at Sc � 100 only. The grids are uniform in
the mean ¯ow direction. They are stretched in the
direction normal to the wall, with the ®nest spacing at
the walls. According to Calmet et al. [9], at least three
mesh points in the wall-normal direction are required
within the di�usive sublayer, y < 5=Sc1=3, to resolve the
unlinear behavior near the wall. The mesh systems used
in the study ful®ll this requirement.
The initial pro®le in a cross section for the velocity

was set parabolic. The mass transfer calculation was not
added until the hydrodynamic simulation had reached
statistically equilibrium state. The initial pro®le in a
cross section for the reduced concentration was linear
for the ®rst calculation, at Sc � 1 and with a ®xed value
as the boundary condition at the walls. The calculations
with other boundary conditions or higher Sc were
initialized with the calculated concentration ®eld ob-
tained with the highest available Schmidt number. The
calculated variables were considered to be at equilibrium
when variation of the statistical properties in time were
small.

4. Results

The ¯ow is assumed to take place at Reynolds number
of 180 based on the wall friction velocity and the

Fig. 1. Geometry of the cell and the chosen coordinate system.
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channel half width. The conditions of computation of
the velocity ®eld are exactly the same as those reported
in [6]. The present study focuses on the mean concen-
tration ®eld, RMS intensities, the eddy di�usivity, and
the structure of the instantaneous concentration ®eld.
Transport equations are solved for the concentration
®eld at Schmidt number 1,10 and 100.
In Figure 2, the mean concentration pro®le in the

direction normal to the walls is presented for Sc � 1.
Good agreement is found with results from direct
numerical simulations by Lyons et al. [10] and Papav-
assiliou et al. [11]. The methodology and subgrid-scale
model used in the present study are consequently found
to be accurate enough to model the turbulence mass
transport on small scales. Figure 3 indicates similar
variation of the mean concentration pro®le in the
logarithmic diagram. With increasing y�, the concen-
tration pro®le exhibits a bu�er layer character, followed
by a logarithmic region. As shown on Figure 3, the
concentration pro®le in the outer region ®ts well with
the logarithmic law of �c� � 3:6 ln�y�� � 1:7 after
y� � 30. The constants of the logarithmic law found
in the present study agree well with the mean pro®les
predicted by Lyons et al. [10] and Papavassiliou et al.
[11].
Figures 2 and 3 also present the average concentra-

tion calculated with the Butler±Volmer-like boundary
condition (6) and the three di�erent values of Ko. No

in¯uence of Ko, or the exchange current density, can be
observed on the mean concentration pro®les.
The RMS levels for the concentration ®eld are

calculated at Schmidt numbers and Ko mentioned
above, and presented in Figure 4. Very good agreement
is obtained with the results presented by Lyons et al.
[10], performed with a ®xed value of concentration set at
the walls. Moreover, RMS levels computed with the
boundary condition (6) and Ko � 10=Res, have inter-
mediary values between the two results obtained with
Ko � 1=Res (io � 10ÿ4 A mÿ2) and Ko � 100=Res

(io � 10ÿ2 A mÿ2). Therefore, at Sc � 1, RMS levels
close to the wall are likely to be a monotonic function of
Ko, or io, and seem to decrease with increase in
exchange current density.

Table 1. Mesh speci®cation

Nx Ny Nz Dx Dz Dymin Dymax

Mesh 1� 1� 1 32 42 96 70.6858 11.781 1.4062 18.92

Mesh 1� 2� 1 32 84 96 70.6858 11.781 0.7031 9.46

Mesh 1� 6� 1 32 252 96 70.6858 11.781 0.2344 3.16

Fig. 2. Mean concentration at Sc � 1 in the normal direction to the walls. Key: (±�±�) present study, LES, Res � 180, cwall � �1=C�; (± ±) present
study, @c

@y

� �
wall
� �Jwall; (e e e) present study,Ko � 1=Res; (±±) present study,Ko � 10=Res; (� � �) present study,Ko � 100=Res; (� � �) Lyons

[10], DNS, Res � 150; (� � �) Papavassiliou [11], DNS, Res � 150.

Fig. 3. Mean concentration at Sc � 1 in the normal direction to the

walls and in the near-wall region. Key: (± � ±) present study,

~cwall � �1=C�; (± ±) present study, @c
@y

� �
wall
� �Jwall; (e e e) present

study, Ko � 1=Res; (±±) present study, Ko � 10=Res; (� � �) present
study, Ko � 100=Res; (/ / /) �c� � 3:6 ln�y�� � 0:5.
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An issue of interest is the assymptotic behaviour of
the Butler±Volmer-like, equation (6), with respect to
variations of Ko, de®ned in Equation 7. At high values
of Ko, or at high exchange current densities, the right
hand side of Equation 6 becomes dominant. The system
becomes sensitive to small variations of the concentra-
tion at the wall and tends to balance them fast. In the
limiting case where Ko approaches in®nity, Equation 6
becomes equivalent to Equation 4, that is, the system
acts as one with a ®xed value set for concentration at
the wall. At low values of Ko, the ¯uctuations of the
concentration gradient at the wall are damped and the
behaviour of Equation 6 becomes similar to a constant
¯ux at the wall. As a result, the di�usion boundary layer
simulated with the Butler±Volmer-like boundary condi-
tion (6) at a low exchange current density, is expected to
have similar behaviour as that with a constant ¯ux for
the boundary condition, and at a high exchange current
density, similar to the case with a ®xed value at the
walls. A comparison between pro®les found with di�er-
ent values of Ko in Figure 4, con®rms the proposed
behavior. Figures 5 and 6 show RMS intensities calcu-
lated with Equations 4 and 5, at Schmidt numbers of 10
and 100, respectively. As expected, values predicted with
a ®xed value set at the walls, are lower than RMS
intensities predicted with a constant ¯ux. Similar be-
havior was predicted at Sc � 1. Since the above discus-
sion does not account for values of Schmidt number, it
is possible, at any Schmidt number, to draw conclusions
about the e�ect of very low and very high exchange
current densities on RMS intensities, on the basis of
calculations made only with a ®xed value and a constant
¯ux set at the walls.
The mean eddy di�usivity, de®ned as Ec � ÿvc

ÿ
d�c
dy

�ÿ1
,

is presented for di�erent cases in Figures 7, 8 and 9.
Figure 7 shows good agreement between the prediction
of the present study, the prediction of Papavassiliou
et al. [11], and the empirical pro®le proposed by

Fig. 4. RMS levels of the concentration ®eld at Sc � 1 in the normal

direction of the walls. Key: (� � �) present study, cwall � �1=C�;
(���) present study,

ÿ
@c
@y

�
wall
� �Jwall; (e e e) present study,

Ko � 1=Res; (±±) present study, Ko � 10=Res; (� � �) present study,
Ko � 100=Res; (ÿÿÿ) Lyons [10].

Fig. 5. RMS levels of the concentration ®eld at Sc � 10 in the normal

direction of the walls. Key: (±±) present study, cwall � �1=C�; (� � �)
present study,

ÿ
@c
@y

�
wall
� �Jwall.

Fig. 6. RMS levels of the concentration ®eld at Sc � 100 in the normal

direction of the walls. Key: (±±) present study, cwall � �1=C�; (� � �)
present study, �@c@y�wall � �Jwall.

Fig. 7. Mean eddy di�usivity in the near-wall region at Sc � 1. Key:

(� � �) Ec � 0:000 775 y3 [11]; (±±) present study, cwall � �1=C�; (� � �)
Papavassiliou [11]; (e e e) Lyons [10].
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Papavassiliou et al. [11]. Figures 8 and 9 indicate that
the eddy di�usivity is not in¯uenced by the values of
Ko, or the exchange current density io. The fact that the
eddy-di�usivity is found to be independent ofKo can be
related to the same observation for the mean concen-
tration pro®le (see Figures 2 and 3).
Streamwise and wall-normal turbulent passive mass

¯ux are presented in Figures 10 and 11. Good agree-
ment is found with the direct numerical simulation of
Kawamura et al. [12]. No data from previous results
were available for comparison with the predictions of
the present study at Sc > 5. The present study ®nds, as
the last mentioned study, that the scalar ¯uctuations
correlate more strongly with the streamwise velocity
than with its normal-wall component. Figure 10 shows
that the exchange current in¯uences the range of strong
correlation between the streamwise velocity and the
scalar ¯uctuations. Inversely, no in¯uence of the ex-
change current is noticed on the correlation between the

wall-normal velocity and the scalar ¯uctuations (see
Figure 11).
Iso-lines of the instantaneous concentration ¯uctua-

tions for Sc � 1 in a (x±z) section at y� � 6:76 are
presented in Figure 12. The presence of well-known
streaky structures elongated in the streamwise direction
is clearly observed. Such structures are typical for
turbulent ¯ows in the viscous sublayer [13].
To compute the results in Figure 12, the Butler±

Volmer-like law has been used. The in¯uence of the
exchange current on the streaks is studied, by comparing
Figure 12(a), which presents a ®eld computed with
Ko � 10=Res, and Figure 12(b) which corresponds to
Ko � 100=Res. Even if it is not possible here to give a

Fig. 8. Mean eddy di�usivity in the near-wall region at Sc � 1. Key:

(� � �) Ec � 0:000 775 y3 [11]; (±±) c�wall � �1=C�; (� � �) ÿ@c@y�wall �
�Jwall; (e e e)

ÿ
@c
@y

�
wall
� �ÿ cwallRes

ÿJo

�
.

Fig. 9. Mean eddy di�usivity in the near-wall region at Sc � 1. Key:

(±±) Ko � 100=Res; (� � �) Ko � 10=Res; (e e e) Ko � 1=Res.

Fig. 10. At Sc � 1, the streamwise turbulent heat ¯ux. Results

computed with the Butler±Volmer-like boundary condition. Solid line,

Ko � 10=Res. Dashed lines, Ko � 100=Res. Stars account for the

numerical results of Kawamura et al. [12], with Res � 180 and

Sc � 1:5.

Fig. 11. At Sc � 1, the wall-normal turbulent heat ¯ux. Results

computed with the Butler±Volmer-like boundary condition. Solid line,

Ko � 10=Res. Dashed lines, Ko � 100=Res. The stars account for the

numerical results of Kawamura et al. [12], with Res � 180 and

Sc � 1:5.
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clear quantitative approximation of the spacing, it seems
that the spanwise spacing decreases with the increasing
exchange current. This result is con®rmed by the
computation of the two-point spanwise correlation
coe�cients of the concentration ¯uctuations (see
Figure 13). Considering the normal distance from the
wall to the ®rst local minimum of the spanwise
correlation coe�cient as the mean streak half-spacing,
Calmet et al. found r�z � 100. With the same method (at
Sc � 1) the present study found, r�z around 65 with an
intermediate exchange current, and around 55 with a

high exchange current (see Figure 13). These two results
are in good agreement with the computed spacing found
by Kline et al. [13].
At Sc � 100, the concentration ¯uctuations were

plotted in the viscous sublayer in a section (x±z) at
y� � 6:76=Sc1=3 � 1:17 (see Figure 14). Again, the
streaky structure of ¯uctuations are clearly observed.
Figure 15 presents the instantaneous concentration

¯uctuations in the logarithmic region at y� � 54:1. The
streaky structures are no longer visible. Here, Ko is
taken equal to 10 and 100 only. At these values, the

Fig. 12. At Sc � 1, snapshot contour plots of the concentration ¯uctuations in a (x±z) plane at y� � 6:76. Results computed with the Butler±

Volmer-like boundary condition. The increment in scalar is 0.02. Solid lines represent 0:0 � c0 � c0max. Dashed lines c0min � c0 � 0:0. (a)

Ko � 10=Res. c
0
min � ÿ0:323, c0max � �0:21. (b) Ko � 100=Res. c

0
min � ÿ0:457, c0max � �0:186.

Fig. 13. At Sc � 1, spanwise two-point correlation coe�cients at

y� � 6:76. Results computed with the Butler±Volmer-like boundary

condition. Solid line,Ko � 10=Res. Dashed lines,Ko � 100=Res. The

stars account for the numerical results of Calmet et al. [9] at y� � 1:7,

Res � 640, and a Dirichlet boundary condition at the walls.

Fig. 14. At Sc � 100, snapshot contour plots of the concentration

¯uctuations in a (x±z) plane at y� � 1:17. Results computed with a

constant ¯ux for concentration at the walls. Increment in scalar is 0:02.
Solid lines represent 0:0 � c0 � c0max. Dashed lines c0min � c0 � 0:0.

c0min � ÿ0:687, c0max � 0:379.
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exchange current density has not in¯uenced the wall-
normal location of the streaky structures. This was
expected, since the streaky structures are traditionally
observed in the di�usive viscous sublayer [9]. But
supplementary computations with di�erent values of
exchange current would allow con®rmation of this
result, and its extension to a larger range of exchange
currents.

5. Conclusions

A model problem for studying the mechanisms of
turbulent mass transfer in an electrochemical system
by means of large eddy simulations is proposed. First, it
was shown that the methodology was able to success-
fully reproduce documented literature results. Both
mean pro®les and ¯uctuations were predicted accurate-
ly. The in¯uence of the exchange current density on the
turbulent di�usion layer was investigated at Schmidt
numbers of 1, 10 and 100. The studied range of the
exchange current density was between io � 10ÿ4 A mÿ2

and io � 10ÿ2 A mÿ2. Three di�erent boundary condi-
tions for the concentration ®eld were used at the walls,
i.e. a linearized Butler±Volmer-like condition, a given
value and a given ¯ux. At Sc � 1, the exchange current
was shown to have no in¯uence on the structure of the
mean concentration, neither on the eddy di�usivity, nor
on the wall-normal turbulent heat ¯ux. However, the
RMS intensities, the streamwise turbulent heat ¯ux,
and the lateral dimensions of turbulence structures in

the near-wall region were in¯uenced. The Butler±
Volmer-like boundary condition predicts results close
to those obtained with a given value at the wall if the
exchange current density is high, and close to those
obtained with a given ¯ux if the exchange current
density is low.
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